
1

The structure of a Python project

A Python project may initially consist of only one or two files. In this case, you don’t have to
worry about a project structure. But the situation is different if the program grows. In
addition to the actual Python code files, documentation could also be added at some point.
And as a rule, the tests should be stored in separate files and a specially designated
directory. Inevitably, the question of a meaningful structure arises.

But what is the best structure for a Python project? This question is not easy to answer.
There are different suggestions on the Internet, as well as in specialist literature. The
following statements are also only to be understood as a suggestion. They may serve as a
starting point for your projects.

A simple project structure

A typical structure for a project named my_project could look like this:

.

├── README.md

├── docs

├── my_project

│ ├── __init__.py

│ └── main.py

├── pytest.ini

├── requirements-dev.txt

├── requirements.txt

├── setup.cfg

├── setup.py

└── tests

 └── __init__.py

There are three subfolders within my_project:

•	 my_project: This folder has (here) the same name as the project. Instead of the project
name, this folder is sometimes also called src. This is a package, which is why this

2

folder contains a file called __init__.py. This file is usually empty (nowadays). It is
called when a package or a module of this package is imported.

•	 docs: This directory contains all the files required for the documentation (e.g. for the
documentation generator Sphinx).

•	 tests: All files containing tests are located here. This directory also has a file called
__init__.py. If pytest is used, a configuration file for pytest can optionally be added
to the project folder: pytest.ini.

The external libraries required for a project, for example numpy or matplotlib, are listed in
the requirements.txt file. They can then be installed using pip:

pip3 install -r requirements.txt # Linux, macOS

pip install -r requirements.txt # Windows

Some developers store the packages that are not immediately required for the execution of
this project in a file called requirements-dev.txt (e.g. pytest). However, this is optional.

Finally, there are two files remaining: setup.py and setup.cfg. In this project example you
can see both of these files. But that doesn’t have to be the case. In other projects there may
only be one setup.py file.

These files allow you to create an installation package. They are required, for example, if a
Python program is to be published on the ‎‎platform PyPi‎‎ (so that it can be installed via ‎pip).

There used to be only one file called setup.py. If only this file is used (and not setup.cfg
as well), it contains the basic information about the project. For our sample project, a
setup.py file could have the following content:‎

from setuptools import setup, find_packages

VERSION = '0.1.0'

setup(

 name='my_project',

 version=VERSION,

 license='MIT',

 description='Just an example.',

 author='My Name',

 author_email='my_name@xyz.com',

https://www.sphinx-doc.org/en/master/
https://docs.pytest.org/en/8.0.x/index.html
https://pypi.org/

3

 url='https://github.com/<user>/<project>',

 packages=find_packages(exclude=('tests', 'docs')),

 python_requires='>=3.11'

)

The setup.py file can become quite complex. For this reason, the configuration file
setup.cfg was introduced. If this file is used, the content of setup.py is reduced to two
lines:

import setuptools

setuptools.setup()

And instead of setup.py the setup.cfg file contains all of the required metadata:

[metadata]

name = my_project

author =

author-email =

license =

long_description = file: README.md

url = https://

requires-python = >= 3.11

Additional notes

The file main.py represents the entry point of the program. The name can be chosen freely,
but often this file is called main.py or cli.py (if it’s a console program).‎

It’s a good idea to add a README.md file to each project. Not least if the project is to be
published, a file with this name is required. This is where other developers can find useful
information about the project. In addition, projects (on Github or GitLab, etc.) often also
contain a CONTRIBUTING.md file that offers other developers tips on how to participate in
the project.

Take a look at setup.cfg and setup.py files of other projects on Github. This gives you an
idea of what kind of metadata others have added.

4

In this example the tests folder is located at the top directory level. But other developers
prefer to make this directory a subdirectory of the package directory.

On Github you can find a shell script that can be used to automatically create a project
structure. This script does not claim to be complete. But it may be a good starting point for
your own script.

As mentioned above, the structure presented here is a suggestion. More complex Python
applications may require the project to be structured differently. For example, there are
programs that are called in the terminal but also have a graphical user interface. In this case
it makes sense to use different subdirectories for this functionality.

License

•	 Version: 1.0 — February 14th, 2024
•	 Author: Bodo Schönfeld
•	 Homepage: https://niftycode.eu
•	 Github: https://github.com/niftycode

Attribution 4.0 International (CC BY 4.0):

 

You are free to:

•	 Share — copy and redistribute the material in any medium or format
•	 Adapt — remix, transform, and build upon the material for any purpose, even

commercially

https://gist.github.com/niftycode/fd1442c624798c5f2773db0b443827cc
https://niftycode.eu
https://github.com/niftycode

