
1

The structure of a Python project

Introduction . 1
A simple project structure . 1
pyroject.toml and setup.cfg in one project . 3
Project that only uses the pyproject.toml file . 4
Additional notes . 5
License . 6

Introduction

A Python project may initially consist of only one or two files. In this case, you don’t have to
worry about a project structure. But the situation is different if the program grows. In
addition to the actual Python code files, documentation could also be added at some point.
And as a rule, the tests should be stored in separate files and a specially designated
directory. Inevitably, the question of a meaningful structure arises.

But what is the best structure for a Python project? This question is not easy to answer.
There are different suggestions on the Internet, as well as in specialist literature. The
following statements are also only to be understood as a suggestion. They may serve as a
starting point for your projects.

A simple project structure

A typical structure for a project named my_project could look like this:

.

├── README.md

├── docs

├── my_project

│ ├── __init__.py

│ └── main.py

│── pyproject.toml

├── pytest.ini

├── requirements-dev.txt

2

├── requirements.txt

├── setup.cfg

├── setup.py

└── tests

 └── __init__.py

There are three subfolders within my_project:

•	 my_project: This folder has (here) the same name as the project. Instead of the project
name, this folder is sometimes also called src. This is a package, which is why this
folder contains a file called __init__.py. This file is usually empty (nowadays). It is
called when a package or a module of this package is imported.

•	 docs: This directory contains all the files required for the documentation (e.g. for the
documentation generator Sphinx).

•	 tests: All files containing tests are located here. This directory also has a file called
__init__.py. If pytest is used, a configuration file for pytest can optionally be added
to the project folder: pytest.ini.

The external libraries required for a project, for example numpy or matplotlib, are listed in
the requirements.txt file. They can then be installed using pip:

pip3 install -r requirements.txt # Linux, macOS

pip install -r requirements.txt # Windows

Some developers store the packages that are not immediately required for the execution of
this project in a file called requirements-dev.txt (e.g. pytest). However, this is optional.

Now let's look at the configuration files setup.py, setup.cfg and pyproject.toml. The
setup.py file should no longer be used in new projects, as it is now marked as deprecated.
Nevertheless, it is often part of older projects.

Nowadays, the file pyproject.toml is the configuration file. The file setup.cfg may also
be present. These files allow you to create an installation package. They are required, for
example, if a Python program is to be published on the ‎‎platform PyPi‎‎ (so that it can be
installed via ‎pip). However, setup.cfg is not absolutely necessary.

Previously, the setup.py file contained the metadata about the project. Now this is in the
pyproject.toml file. Or the metadata is divided into the files pyproject.toml and
setup.cfg. Now the question arises, why or when do you need the configuration file

https://www.sphinx-doc.org/en/master/
https://docs.pytest.org/en/8.0.x/index.html
https://pypi.org/

3

setup.cfg? Well, setup.cfg can play a role when the setuptools are used as build tools.
Furthermore, many older programs use setup.cfg, and migration to pyproject.toml may
be a step-by-step process.

In summary, if your project is completely switched to pyproject.toml and all metadata
(name, version, dependencies, etc.) and build instructions are contained there, you no
longer need setup.cfg.

pyroject.toml and setup.cfg in one project

If a project contains both configuration files, it is because, for example, the setup.cfg file
contains the metadata and the pyproject.toml file only contains the information about the
build system. This will be the case for older projects that have not yet completely switched
to pyproject.toml.

The setup.cfg file could then have the following content:

[metadata]

name = my_project

version = 1.0.0

author =

author_email =

url =

description =

long_description = file: README.md

long_description_content_type = text/markdown

license = MIT

license_file = LICENSE

requires_python = >=3.12

classifiers =

 License :: OSI Approved :: MIT License

 Operating System :: OS Independent

 Programming Language :: Python :: 3

 Programming Language :: Python :: 3.12

 Programming Language :: Python :: 3.13

 Programming Language :: Python :: Implementation :: CPython

And the pyproject.toml file contains information about the build system to use. The
following example uses setuptools as build system:

4

[build-system]

requires = ["setuptools>=70.0"]

build-backend = "setuptools.build_meta"

In addition to setuptools, Hatchling, Flit and PDM can also be used. You can find more
information about how to package a Python project and examples of the build tools on this
website.

Project that only uses the pyproject.toml file

As already mentioned, the sole presence of the pyproject.toml file is sufficient. This will
be the case for new projects.1 Below is an example of the contents of this configuration file.
You can find more on this topic on the website mentioned above. (The example shown
comes from that website.)

[project]

name = "example_package_YOUR_USERNAME_HERE"

version = "0.0.1"

authors = [

 { name="Example Author", email="author@example.com" },

]

description = "A small example package"

readme = "README.md"

requires-python = ">=3.10"

classifiers = [

 "Programming Language :: Python :: 3",

 "Operating System :: OS Independent",

 "License :: OSI Approved :: MIT License",

]

[project.urls]

Homepage = "https://github.com/pypa/sampleproject"

Issues = "https://github.com/pypa/sampleproject/issues"

	 1	 An example of this is the package manager uv. It creates a simple project structure that contains only the pyproject.toml file (and no
other configuration files).

https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/

5

Additional notes

The file main.py represents the entry point of the program. The name can be chosen freely,
but often this file is called main.py or cli.py (if it’s a console program).‎

It’s a good idea to add a README.md file to each project. If you want to publish a project or if
you use Github (or a similar service), this file is required. This is where other developers can
find useful information about the project. In addition, projects (on Github or GitLab, etc.)
often also contain a CONTRIBUTING.md file that offers other developers tips on how to
participate in the project.

Take a look at setup.cfg and pyproject.toml files of other projects on Github. This gives
you an idea of what kind of metadata others have added.

In this example the tests folder is located at the top directory level. But other developers
prefer to make this directory a subdirectory of the package directory.

The logging module enables the implementation of a logging system. Configuration is done
via a file named logging.ini. An example of the structure of this configuration file can be
found in this project.

There may be other configuration files. If mypy is used, the file mypy.ini may be present. If
flake8 is used, the file .flake8 may be present. The .flake8 file begins with a dot. On
Unix-like systems (Linux, macOS) this indicates a hidden file. It is therefore not displayed in
the file manager.

On Github you can find a shell script that can be used to automatically create a project
structure. This script does not claim to be complete. But it may be a good starting point for
your own script. I’ve also published a simple program written in C on GitHub that can be
used to create a new project. Additionally, there are package managers like uv that can be
used to set up a new Python project. If you’re interested in this topic, you should take a look
at my blog post.

As mentioned above, the structure presented here is a suggestion. More complex Python
applications may require the project to be structured differently. For example, there are
programs that can be started via the terminal but also have a graphical user interface. In this
case it makes sense to use different subdirectories for this functionality.

https://github.com/niftycode/firefox-forensics
https://gist.github.com/niftycode/fd1442c624798c5f2773db0b443827cc
https://github.com/niftycode/createPythonProject
https://niftycode.eu/setting-up-the-package-manager-uv-on-a-mac/

6

License

•	 Version: 2.1 — June 10th, 2025
•	 Author: Bodo Schönfeld
•	 Homepage: https://niftycode.eu
•	 Github: https://github.com/niftycode

Attribution 4.0 International (CC BY 4.0):

 

You are free to:

•	 Share — copy and redistribute the material in any medium or format
•	 Adapt — remix, transform, and build upon the material for any purpose, even

commercially

https://niftycode.eu
https://github.com/niftycode

	The structure of a Python project
	Introduction
	A simple project structure
	pyroject.toml and setup.cfg in one project
	Project that only uses the pyproject.toml file
	Additional notes
	License

